
Previously the province of large genome centres, DNA 
sequencing is now a key component of research carried  
out in many laboratories. A number of new applica-
tions of sequencing technologies have been spurred 
by rapidly decreasing costs, including the study of 
microbial communities (metagenomics), the discovery  
of structural variants in genomes and the analysis of  
gene structure and expression. The length of the 
sequences generated by modern sequencing instru-
ments is considerably shorter (hundreds to thousands of 
base pairs) than that of the genomes or genomic features 
being studied (which commonly span tens of thousands 
to billions of base pairs). Thus, many analyses start with 
the computational process of sequence assembly that 
joins together the many sequence fragments generated 
by the instrument. Biologists who need to assemble 
the sequencing data generated in their experiments are 
faced with the challenge of choosing, from a myriad of 
options, the assembly strategy and software best suited 
for their experiment. This choice is made harder by 
the rapid development of new assembly tools, which 
is driven by advances in sequencing technologies and 
the broader scope of applications for these technolo-
gies. Among recent innovations in sequence assem-
bly are the use of memory-efficient data structures1,2, 
the development of new de novo assembly strategies 
for data derived from metagenomic3–5, single-cell6,7 or 
transcriptome experiments8,9 and the effective use of 
complementary information derived from multiple 
sequencing technologies10,11 and/or paired-end data or 
mate-pair data12,13.

All assembly approaches rely on the simple assump-
tion that highly similar DNA fragments originate from 
the same position within a genome. The similarity 

between DNA sequences is then used to ‘stitch’ together 
the individual fragments into larger contiguous 
sequences (contigs), thereby recovering the informa-
tion lost during the sequencing process. The assembly 
process is complicated by the fact that, in many cases, 
this underlying assumption is incorrect. For example, 
genomic repeats — segments of DNA repeated in an 
almost identical form throughout a genome — yield 
fragments with highly similar sequences that originate 
from different places in the genome. Similarly, in tran-
scriptome or metagenomic samples, nearly identical 
sequences may originate from different transcripts or 
genomes within the sample. How much an assembler 
is confused by such artefacts primarily depends on the 
length of the sequences that are read by the sequenc-
ing instrument, as repetitive regions shorter than a 
sequencing read can be automatically resolved14. The 
accuracy of the sequence data also has an important 
role: the more errors an assembler is willing to tolerate 
within the data, the more similar distinct regions of a 
genome will appear to the assembler. Broadly speaking, 
segments of the genome that diverge by less than the 
error rate of the sequencing instrument cannot easily 
be distinguished by an assembler.

In this Review, we begin by providing an overview 
of the principles underlying modern assembly tools as 
well as the engineering trade-offs involved in designing 
them. We discuss the value of experimental design for 
successful assembly as well as the ongoing work in the 
important field of assembly evaluation. We then discuss 
trade-offs in the context of the most common applica-
tions of sequence assembly. Our goal is to provide non-
specialist readers with sufficient background to make 
informed choices in the use of assembly techniques.
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Paired-end data
Data from a pair of reads 
sequenced from ends of  
the same DNA fragment. The 
genomic distance between  
the reads is approximately 
known and is used to constrain 
assembly solutions. See also 
‘mate-pair read’.

Mate-pair data
Data from a pair of reads 
sequenced from the same 
circularized DNA fragment.  
The circularization step allows  
for larger fragments sizes to  
be used. They provide the  
same information as paired- 
end reads to the assembler.

Contiguous sequence
(Contig). A sequence 
reconstructed by assembling 
together multiple reads.
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Abstract | Advances in sequencing technologies and increased access to sequencing 
services have led to renewed interest in sequence and genome assembly. Concurrently, 
new applications for sequencing have emerged, including gene expression analysis, 
discovery of genomic variants and metagenomics, and each of these has different needs 
and challenges in terms of assembly. We survey the theoretical foundations that underlie 
modern assembly and highlight the options and practical trade-offs that need to be 
considered, focusing on how individual features address the needs of specific 
applications. We also review key software and the interplay between experimental 
design and efficacy of assembly.
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Read
The sequence generated  
by a sequencing machine  
from a DNA fragment.

Overlap
The relationship between two 
reads, the ends of which have 
highly similar sequences. The 
minimum length allowed for 
the corresponding sequence  
is an important parameter  
in assembly.

Modern sequence assemblers
Mathematical analyses of sequence assembly, which 
dates back to the pioneering work of Esko Ukkonen 
in the 1980s15,16, revealed the fundamental difficulty of 
reconstructing a genome from sequenced fragments. 
Depending on the relationship between the length of 
reads and the length of repeats in the DNA being assem-
bled (BOX 1), genome assembly can range from trivial 
(when all repeats are shorter than the read length) to 
computationally intractable (that is, finding the cor-
rect answer requires trying an exponential number of 
arrangements of reads, a task that cannot be achieved 
even on the best supercomputers) to impossible14 (that 
is, the information contained within the reads is insuf-
ficient to identify the correct sequence reconstruction 
from an exponential number of equally good alterna-
tives). Given the characteristics of currently available 
sequencing technologies (BOX 1), few projects fall into 
the category of ‘trivial’ (primarily small viral genomes or 
transcriptomes). In most cases, full genome sequences 
cannot be efficiently and reliably reconstructed from the 
data produced by the sequencing experiment; rather, 
assemblers produce a fragmented and often error-prone 
picture of the sequence being assembled.

Assembly paradigms. Assemblers are based on one of 
several different paradigms, such as greedy, overlap– 
layout–consensus (OLC), de Bruijn graph and string 
graph (introduced in BOX 2). The choice of approach 
depends on the characteristics of the data being assem-
bled. For example, de Bruijn-graph-based approaches 
have been successful in assembling highly accurate short 
reads (<~100 bp, such as those generated by the Illumina 
Solexa technology; BOX  1), whereas overlap-based 
approaches (such as OLC or string graph) are mostly 
used for longer, more inaccurate data (>200 bp, such as 
Roche 454 and Sanger sequencing data; BOX 1). However, 
this is not an exclusive arrangement: de Bruijn graph 

assemblers have successfully been used with longer reads 
by using a pre-processing stage to correct sequencing 
errors17,18, and efficient overlap-based assemblers for 
short reads have also been developed19. The choice of 
assembly paradigm on its own plays a marginal part in 
defining the performance and efficiency of an assembler.

As sequencing technologies evolve, assembly tools 
are adapting to cope with the features and scale of the 
data (TABLE 1). Whereas early sequence assemblers had to 
make do with sparse coverage, modern assemblers have  
to deal with the problems of plenty. The success of modern 
sequence assemblers has thus primarily been determined 
by their ability to face the twin challenges of engineering 
(that is, dealing with the scale of data) and analysis (that 
is, adapting to and exploiting specific features of the data).

Engineering challenges. Modern assemblers must be able 
to analyse large data sets efficiently, to handle sequencing 
errors and to capture the repeat structure of the genome 
correctly. Meeting these challenges has been key in defin-
ing assembly tools that have had an important impact 
on the field. For example, one of the first widely used 
short-read assemblers, Velvet20, made a mark by show-
ing that high-quality assemblies could be obtained from 
ultra-short reads (~30 bp) and high-coverage data sets. 
This approach was extended to the assembly of large 
genomes in the program ABySS21 and for the first de novo 
assembly of a mammalian genome entirely using short 
reads with the program SOAPdenovo22. SOAPdenovo is 
a memory-efficient assembler that also includes robust 
error correction (to reduce sequencing errors) and scaf-
folding modules (to leverage mate-pair data; see ‘Analysis 
challenges’ below).

The importance of error correction for de Bruijn-
graph-based assembly, in particular, has led to the 
recent development of tools for this task18,23,24 that serve 
as useful pre-processors in genome assembly applica-
tions. Whereas early short-read assemblers focused on 

Box 1 | Sequencing and mapping technologies

A full survey of sequencing technologies is beyond the scope of this article. The table below compares the currently 
available technologies in terms of several characteristics of importance for genome assembly: read length, error rate  
and the ability to generate paired-end reads natively. Note that potentially all sequencing technologies can be used to 
sequence mate-pair libraries obtained by the circularization of long DNA fragments91. Furthermore, long-range linking 
information can be obtained from genome-mapping technologies, such as optical mapping92.

For most technologies, read lengths and error rates depend on the specific characteristics of the sequencing 
experiment. The values provided in the table are those that are encountered in typical recent projects.

*454 and Ion Torrent technologies are prone to errors in homopolymer regions, which are segments of the genome in which the same 
nucleotide is repeated multiple times94. ‡Pacific Biosciences instruments produce reads with an exponential distribution of read 
lengths, only a few of which reach the multi-kb range10,11.

Technology Read length (bp) Error rate Native paired-end read support Refs

ABI/Solid 75 Low (~2%) Yes 93

Illumina/Solexa 100–150 Low (<2%) Yes 94

IonTorrent ~200 Medium (~4%)* No 94

Roche/454 400–600 Medium (~4%)* No 94

Sanger Up to ~2,000 bp Low (~2%) Yes

Pacific Biosciences Up to ~15,000‡ High (~18%) Yes (in strobe read mode) 39
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de Bruijn graph approaches to avoid computing over-
laps for large sets of reads (a computationally intensive 
task using the algorithms available at the time), the use 
of efficient search data structures (in particular, the FM 
index25) has dramatically improved the scalability of 
overlap-based approaches (for example, the assembler 
SGA19). The need to process increasingly large data 
sets (comprising tens to hundreds of millions of reads) 
efficiently has also led to the increased use of paral-
lel processing (concurrent analysis on multiple com-
puting nodes) for both de Bruijn-graph-based21,26 and  
overlap-based27 assemblers.

Furthermore, memory efficiency has also become 
an important area of focus for genome1,19 and meta
genome28 assemblers and spurred the development of 
new approaches to construct and to process assembly 
graphs. Recently introduced techniques for reduc-
ing memory consumption have included the use of 
sparse graph representations2, compressed graph data 
structures1, Bloom filters28 and the FM index for effi-
cient overlap calculation19. This new class of memory- 
efficient assemblers allows the analysis of much 
larger data sets (such as soil microbiomes28) and 
allows a broader range of scientists to take advantage 

Box 2 | Assembly paradigms

The strategies used by sequence assemblers can be organized into three major paradigms.

Greedy
The assembler always makes the choice with the greatest immediate benefit: for example, the assembler always  
joins the reads that overlap best, as long as they do not contradict the already constructed assembly. The choices made  
by the assembler are inherently local and do not take into account the global relationship between the reads. Most 
greedy assemblers include heuristics that are designed to avoid misassembling repetitive sequences. Many early 
assemblers, such as phrap and TIGR Assembler95, relied on this paradigm, as do some more recent tools, such as 
VCAKE96. The greedy paradigm is, however, not widely used owing to the inherently local assembly process that cannot 
easily use global information (such as long-range mate-pair links) to resolve repetitive genomes.

Overlap–layout–consensus
The assembler starts by identifying all pairs of reads that overlap sufficiently well and then organizes this information into a 
graph containing a node for every read and an edge between any pair of reads that overlap each other. This graph structure 
allows the development of complex assembly algorithms that can take into account the global relationship between the 
reads. A variant of this approach — string graph — simplifies the global overlap graph by removing redundant information 
(transitive edges). This paradigm was made popular by the work of Gene Myers, embodied in Celera Assembler44 and 
dominated the assembly world until the emergence of the new generation of short-read sequencing technologies. 
Concerns about the computational complexity of overlap computation have limited the application of the overlap–layout–
consensus (OLC) approach until recently, when the assembler SGA19 introduced a new approach based on efficient string 
indexing data structures.

De Bruijn graph
De Bruijn graph assemblers model the relationship between exact substrings of length k extracted from the input reads. 
Similarly to the OLC approach, the nodes in the graph represent k‑mers, and the edges indicate that the adjacent k‑mers 
overlap by exactly k − 1 letters (for example, the 5‑mers ACTAG and CTAGT share exactly four letters). Whereas the reads 
themselves are not directly modelled in this paradigm, they are implicitly represented as paths through the de Bruijn 
graph. Most de Bruijn graph assemblers use the read information to refine the graph structure and to remove graph 
patterns that are not consistent with the reads. Also, as the de Bruijn graph approach is based on exact matches, error  
correction approaches (used both before and during assembly) are crucial for achieving high-quality assemblies. The  
de Bruijn approach was popularized by the assembler Euler17 and has dominated the design of modern assemblers targeted 
at short-read sequencing data, such as Velvet20, SOAPdenovo22 and ALLPATHS30. De Bruijn graph assemblers are, however, 
stymied by sequencing errors and will probably decrease in importance as reads become longer and more inaccurate.

The figure highlights the interplay between read length, assembly paradigm and the repeat structure of the genome 
being assembled. Represented is a segment of the repeat graph of a genome comprising a repeat (R) and the flanking 
unique regions (A–D). Multiple traversals of this graph are possible, leading to different genome reconstructions (ARB, 
CRD; and ARD, CRB). The repeat graph itself is independent of the chosen assembly paradigm and models the inherent 
ambiguity introduced by genomic repeats. The goal of the assembler is to use the information contained in the reads to 
approximate and to resolve the structure of the repeat graph. For example, a long read (r1) spanning the entire repeat 
indicates that the repeat occurs in two genomic neighbourhoods: ARB and CRD. Similar information can be obtained 
from the mate pair r5–r6. Short reads (namely, r2, r3 and 
r4) do not provide sufficient information to disambiguate 
the repeat as both the ARB and ARD reconstructions are 
compatible with overlaps between r2 and r3, and r2 and 
r4, respectively. k-mers (information underlying de Bruijn 
graph assemblers) uniformly cover the reads (shown 
only for r1 for simplicity). Note that k-mer length 
correlates with the read overlaps that can be detected 
by the assembler: for example, if the k-mer size is longer 
than the overlap between reads r2 and r3 (shown by the 
grey box), the resulting de Bruijn graph will not be able 
to join the corresponding reads.
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Scaffolds
An ordered collection of 
contiguous sequences 
(contigs), the relative 
placement of which is typically 
inferred from mate-pair reads 
and other information. The 
sequence within the gaps 
between the contigs is usually 
not known.

of assembly tools without the need to acquire and 
to maintain high-performance computational 
infrastructures.

Analysis challenges. In addition to the engineering 
challenges outlined above, modern sequence assem-
blers have continued to develop new approaches for 
representing and analysing the assembly graph to 
assemble repeats correctly and to identify genomic 
variants distinguishing co-assembled haplotypes. One 
of the early pioneers in this direction was the program 
Euler17, which popularized the de Bruijn paradigm for 
assembly as a way to model the repeat structure of a 
genome and introduced methods for using read and 
mate-pair information to resolve repeats29. Many of the 
techniques developed in Euler have been emulated and 
extended by most modern de Bruijn graph assemblers. 
Programs that followed, such as ALLPATHS30 and 
Cortex31, have developed new approaches for analysing 
the assembly graph structure to assemble repeats cor-
rectly and to identify genomic variants distinguishing  
co‑assembled haplotypes31.

Modern sequencing experiments typically gener-
ate mate-pair data: that is, information constraining 
the relative orientation and distance between pairs of 
reads. The ability to analyse this information to resolve 

repeats and to link together individual contigs into 
long-range scaffolds is an important area of improve-
ment for assembly pipelines. Although many assembly 
tools include a scaffolding module, stand-alone soft-
ware such as Bambus32, SOPRA33 and Opera34 (which 
are often referred to as scaffolders) provides greater 
flexibility, particularly when combining data from dif-
ferent sequencing platforms. Tools for carrying out local 
assembly in low-coverage and repetitive regions (also 
called gap-filling or in silico finishing35,36) are valuable 
for validating and improving the assembly and are often 
a part of modern assembly pipelines.

Despite extensive mathematical analyses of the 
assembly problem14–16, sequence assemblers continue 
to rely on heuristics and other ad hoc techniques 
rather than on rigorous algorithms with provable 
performance guarantees. This is in part owing to the 
difficulty of coming up with realistic mathematical 
models for assembly and in part owing to the sheer 
computational difficulty of the assembly problem. 
Most mathematical formulations of assembly suggest 
that finding the optimal assembly could require pro-
hibitive computational resources37. Recent results indi-
cate that optimal solutions may be possible for some 
assembly tasks, such as scaffolding34 and finishing36; 
however, substantial work still remains to be done 

Table 1 | Modern sequence assemblers: applications and sequencing technologies supported

Assemblers Technology Availability Notes Refs

Genome assemblers

ALLPATHS-LG Illumina,  
Pacific Biosciences

ftp://ftp.broadinstitute.org/pub/
crd/ALLPATHS/Release-LG

Requires a specific sequencing 
recipe (BOX 3)

40

SOAPdenovo Illumina http://soap.genomics.org.cn/
soapdenovo.html

Also used for transcriptome and 
metagenome assembly

22

Velvet Illumina, SOLiD, 
454, Sanger

http://www.ebi.ac.uk/~zerbino/
velvet

May have substantial memory 
requirements for large genomes

20

ABySS Illumina, SOLiD, 
454, Sanger

http://www.bcgsc.ca/platform/
bioinfo/software/abyss

Also used for transcriptome 
assembly

21

Metagenome assemblers

Genovo 454 http://cs.stanford.edu/group/
genovo

Uses a probabilistic model for 
assembly

66

MetaVelvet Illumina, SOLiD, 
454, Sanger

http://metavelvet.dna.bio.keio.ac.jp Based on Velvet 4

Meta-IDBA Illumina http://i.cs.hku.hk/~alse/hkubrg/
projects/metaidba

Based on IDBA 5

Transcriptome assemblers

Trinity Illumina, 454 http://trinityrnaseq.sourceforge.net Tailored to reconstruct full-length 
transcripts; may require 
substantial computational time

8

Oases Illumina, SOLiD, 
454, Sanger

http://www.ebi.ac.uk/~zerbino/
oases

Based on Velvet 72

Single-cell assemblers

SPAdes Illumina http://bioinf.spbau.ru/en/spades 7

IDBA-UD Illumina http://i.cs.hku.hk/~alse/hkubrg/
projects/idba_ud

Based on IDBA 6

Note that only a few of the popular and freely available assemblers are included here for each application (a more complete list is 
provided in Supplementary information S1 (table)), and all of the listed assemblers (except Genovo) are based on de Bruijn graph 
construction. IBDA, Iterative De Bruijn graph short read Assembler.
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Library
A collection of paired-end or 
mate-pair reads derived from 
DNA fragments with a tightly 
controlled size range.

Depth of coverage
The average number of reads 
covering a particular base in 
the sequence being assembled.

before efficient and optimal ‘black box’ solutions for 
assembly are available for use by non-specialists. Until 
then, in silico assessment and experimental validation 
(see section below on ‘Assessing assembly quality’) are 
essential for verifying the data produced by assem-
blers before any biological conclusions can be drawn 
from them.

Experimental design
Users of sequencing technologies have many tunable  
parameters that they can control when designing a 
sequencing experiment. These parameters include  
the sequencing technology used, the length of the reads 
produced and the size and number of the mate-pair 
libraries. Each of the choices can affect the ability of an 
assembler to reconstruct the original DNA sequence 
correctly. As a pertinent example, Alkan et al.38 have 
highlighted numerous errors in a recent de novo assem-
bly of the human genome and argued for the continued 
development of new computational and experimental 
strategies that facilitate the complete and correct recon-
struction of genomes. Below, we review several initial 
steps in this direction.

Read length has a fundamental impact on the com-
plexity of assembly: the longer the reads, the fewer 
the repeats that confuse the assembly process. Read 
length is also one of the least ‘tunable’ parameters of 
the sequencing experiment. Although many sequenc-
ing technologies allow users to vary the length of  
the sequences generated (for example, by adjusting the  
number of cycles for which the instrument is run),  
the upper length limit is defined by fundamental limi-
tations of the specific technology. Currently, the longest 
reads, up to about 14 kb10,11, are produced by the Pacific 
Biosciences instruments39. This technology is increas-
ingly used in the sequencing of bacterial genomes, in 
which most repeats (including ribosomal RNA operons) 
are usually shorter than ~6 kb. The long reads can be 
used by assemblers to resolve all genomic repeats and 
thereby to reconstruct entire genomes correctly11. Pacific 
Biosciences data, however, have high error rates, mak-
ing it necessary to augment the experiment with data 
from more precise technologies10,11. Furthermore, the  
read lengths are exponentially distributed: whereas 
the longest reads can extend beyond 10 kb, most of the 
reads are much smaller and have a median size of only 
~800 bp10. As only the long reads are useful as far as 
assembly is concerned, a substantial amount of data must 
be generated to ensure sufficient coverage of the genome 
by long reads. A recent study11 reported that >200‑fold 
coverage of the Rhodobacter sphaeroides genome was nec-
essary to achieve just 1.6‑fold coverage by reads longer 
than 2,000 bp. A different approach for increasing read 
length was proposed by the authors of ALLPATHS-LG40, 
wherein short mate-pair libraries are constructed such 
that the paired reads overlap. For example, a 180 bp library 
of 100 bp Illumina reads would ensure that the mated 
reads overlap on average by 20 bp. The overlapping mates 
can then be stitched together into reads that are roughly 
twice as long as those produced by the sequencing  
instrument (BOX 3).

Mate-pair information is commonly used during 
assembly to resolve genomic repeats, to detect errors 
or structural variants and to scaffold together dis-
tant regions of the assembly. Wetzel et al.12 showed 
that mate pairs are most able to resolve repeats (and 
thereby to increase the size and accuracy of the assem-
bled contigs) if the sequencing experiment is ‘tuned’ to 
the repeat structure of the genome. Specifically, they 
propose a two-stage process in which an initial assem-
bly is constructed from unmated reads to assess the 
size of the repeats; mate-pair libraries that best match 
the repeat sizes are then constructed. For example, the 
ideal mate-pair library for resolving a ribosomal RNA 
repeat of approximately 6 kb would span just a little 
over 6 kb, ensuring that the paired reads are anchored 
in the adjacent unique regions. Shorter mate pairs 
would not be able to disambiguate between multiple 
copies of the ribosomal operon nor would much longer 
mate pairs, such as commonly used fosmid libraries 
(35–40 kb), which may simultaneously span multiple 
operons.

Bashir et al.41 also explored the design of mate-pair 
sequencing experiments in the context of structural 
variation detection. They showed that two mate-pair 
libraries (a short one and a long one) are sufficient 
to optimize the ability to detect structural variants to 
within a level of resolution determined by the length 
of the short library. Their theoretical analysis ignored 
the presence of repeats, which affect the mapping of 
reads to the genome, but empirical results indicate 
that this simplification did not substantially affect the 
results. The authors considered the design of tran-
scriptome sequencing projects as well41. Owing to 
the uneven distribution of transcript abundances in 
a sample, abundant transcripts can be reconstructed 
with limited sequencing depth, whereas the less abun-
dant ones require substantially deeper coverage. They 
propose that it is possible to estimate, from an ini-
tial low-depth sequencing experiment, the relation-
ship between depth of coverage and likelihood that a 
particular transcript is sampled by the sequencing 
data. This information can then be used to estimate  
the level of sequencing that is necessary to sample the 
entire transcriptome.

Finally, we would like to point out an increas-
ing interaction between experimental design and the 
development of assembly approaches. This interaction 
is best exemplified by the ALLPATHS‑LG assembler40, 
which is specifically designed for the assembly of data 
generated according to a special Illumina-based ‘rec-
ipe’, including short overlapping fragment libraries and 
several long-range mate-pair libraries ranging in size 
from ~3 kb (short-jump library) to ~6 kb (long-jump 
library) to 40 kb (fosmid-jump library) (BOX 3). The suc-
cess of the joint design of the assembler and associated 
sequencing experiment — ALLPATHS‑LG arguably 
won the Assemblathon42 and Gage43 competitions — 
will hopefully spur a closer interaction between biolo-
gists and bioinformaticians in developing experimental 
strategies that generate data that can be most effectively 
used by the assembly software.
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N50
A statistic used for assessing 
the contiguity of a genome 
assembly. The contigs in  
an assembly are sorted by size 
and added, starting with the 
largest. The size of the contig is 
reported that makes the total 
greater than or equal to 50% 
of the genome size.

Assessing assembly quality
Determining whether an assembly is correct and com-
paring the quality of different assemblies of the same 
data set are difficult given that the correct answer is 
usually not known (otherwise an assembly would be 
unnecessary). The output of assemblers is usually frag-
mented and often contains mistakes that range from 
small nucleotide changes to copy number changes in 
tandem repeats to large-scale rearrangements of the 
genome structure. All too often, scientists focus only 
on contiguity and ignore the correctness of the recon-
structed sequences. Commonly used measures are total 
size, the number of contigs generated or the weighted 
median contig size (N50). In particular, the N50 size 
(which can be used appropriately to assess the contigu-
ity of an assembly) is frequently misused in the literature 
by using the total assembly size as a proxy for genome 
size, leading to N50 numbers that cannot be compared 
across assemblies of the same genome (see REF. 42 for a 
discussion). Even if correctly used, however, N50 values 
rarely correlate with the actual quality of assembly, as 

demonstrated by recent assembly competitions42,43. N50 
numbers are also meaningless in situations in which 
the goal is to reconstruct multiple sequences that are 
present in the sample at varying levels of abundance, 
such as in metagenomics or transcriptome assembly 
(see below).

To detect assembly errors, scientists have relied on 
independently derived information about the genome 
being assembled, such as mapping data44–46, manu-
ally curated localized assemblies (for example, fin-
ished BAC sequences used to evaluate whole-genome 
assemblies44,47), transcriptome data48 or the genomes of 
closely related organisms49,50. None of these approaches 
can completely verify the quality of an assembly: 
mapping data cannot detect single-nucleotide errors 
or short-range rearrangements; localized assemblies 
provide only partial information; and assembly errors 
cannot be easily distinguished from true biologi-
cal differences between the assembly and assembled 
transcripts or related genomes (although careful  
evolutionary-based analyses can be used to distinguish 

Box 3 | Sequencing recipes

With the ALLPATHS-LG40 assembler, the idea was 
introduced of tying the development of assembly 
algorithms and software with the development of a 
‘recipe’ for the sequencing experiment. The benefits of 
the joint development of software and experiment are twofold: first, the assembler can more efficiently derive 
information from the data and thereby produce better assemblies; second, the developers no longer need to account for 
the diverse characteristics of data that might be generated in the sequencing experiment and can, therefore, focus their 
efforts on improving the accuracy and performance of the assembler. Below, we detail two sequencing recipes suggested 
by the developers of ALLPATHS‑LG.

Mammalian genome recipe
This recipe is based on REF. 40.

45‑fold coverage in 180 bp Illumina fragment library. The library size is chosen such that the paired reads overlap (that is, 
fragment size is smaller than twice the average read length). The assembler can merge the paired reads into a single long 
read that spans the entire DNA fragment, thereby effectively increasing the length of the reads. Longer reads are more 
effective in resolving repeats, leading to improved assembly. Note that the Illumina instrument can natively generate 
paired read data, albeit only from short DNA fragments.

45‑fold coverage in 3 kb Illumina short-jump library. The term ‘jump’ refers to an experimental process that allows a  
DNA fragment to jump over a long segment of a genome. The process (as illustrated in the figure) often involves the 
circularization of DNA fragments of the desired size (3 kb in this case). The resulting circular segments are then sheared 
into small fragments that are suitable for sequencing. The mate-pair information is recovered by identifying, within the 
sequenced fragments, the junction between the ends of the original fragment (see the figure, in which the fragment ends 
were marked, for clarity, with a circle and square).

Fivefold coverage in 6 kb Illumina long-jump library (optional). Similar to the short-jump library except that the protocol is 
optimized for longer fragments.

Onefold coverage in 40 kb Illumina fosmid-jump library (optional). The fosmid library construction is similar to that for the 
short-jump libraries except that the amplification of the large DNA fragments requires transfection in an Escherichia coli 
vector.

Bacterial genome recipe
This recipe is based on REF. 11.

50‑fold coverage in 160–220 bp Illumina fragment library. See above.

50‑fold coverage in 1–3 kb Pacific Biosciences single reads. The Pacific Biosciences technology generates long (1–3 kb) to 
extremely long reads (up to ~15 kb), which are effective for resolving genomic repeats. Owing to the highly uneven 
distribution of read lengths (only a small fraction of the data represents long reads), high depth of coverage is necessary 
to ensure that sufficient numbers of the long reads are available to the assembler.

50‑fold coverage in 2–10 kb Illumina jump library. See above.
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errors from true biological differences49). Intrinsic 
consistency measures have also been used to iden-
tify and to correct assembly errors51. Such measures 
include: the detection of regions with unusual depth 
of coverage that is either too high (possibly indicating 

the collapse of a repeat) or too low (possibly indicating 
an incorrect join between unrelated genomic regions); 
large numbers of mismatches between the assembled 
sequence and the sequencing reads (often found in 
collapsed repeats or misjoins); and inconsistent pair-
ing of mated reads52 (highlighting larger-scale genomic 
rearrangements).

Combinations of the approaches outlined above 
have been used to validate the quality of newly recon-
structed genomes (for example, those of humans38,47, 
Drosophila melanogaster 44, mice53 and bonobos54), 
to compare multiple assembly tools42,43 and to evalu-
ate and to refine an assembly as it is being produced. 
Recent studies indicate that the nucleotide-level 
quality of assemblies widely varies depending on the 
complexity of the genome being assembled, ranging 
from about one error in every 100,000 bp for bacterial 
genomes43 to roughly one error in every 1,000 bp for 
the human genome43 and one error in 5,000 bp for the  
bonobo genome54. These numbers approach and even 
exceed the quality criteria (one error in 10,000 bp) 
established for the manually finished sequence gener-
ated by the Human Genome Project55. Although the 
sequence produced by assemblers is largely correct, 
more substantial errors occur within repeat regions43,55, 
limiting the size of the genomic fragments that can be 
reliably reconstructed to a median of just a few thou-
sand base pairs in complex genomes43 (although long 
segments spanning millions of base pairs can be, and 
often are, reconstructed by modern assemblers). The 
iterative refinement of assemblies through mapping 
and recruitment of unassembled reads has been shown 
to be an effective approach for improving assembly 
quality. In particular, improvements come through 
localized assemblies within repeat-induced gaps, which 
overcome the inherent ambiguity caused by repeats and 
lead to improved contiguity35.

Despite the importance of validation and the 
renewed interest in assembly technologies during  
the past few years, there are few computational tools 
that implement assembly validation techniques. These 
include: AMOSvalidate51, a tool that carries out sev-
eral of the consistency checks outlined above; GAV56, 
a probabilistic approach for combining multiple accu-
racy measures; and the validation scripts used in the 
recent assembly competitions Assemblathon42 and 
Gage43. Validation results can be visually explored with 
the assembly viewer Hawkeye57, which plots the out-
put of AMOSvalidate alongside the assembled pile-up 
of reads, allowing for manual evaluation of the result. 
An alternative representation is the feature response 
curve (FR-curve)58, which provides an intuitive view of 
the contiguity versus errors trade-off across different 
assemblies of the same data set (FIG. 1).

Several recent studies have attempted to compare 
the performance of available genome assemblers, rely-
ing on high-quality gold standards (for example, com-
plete or almost complete reference genomes)43,59–61 or 
simulated data42,59,60,62. The results of these studies can-
not easily be generalized to new genome projects as, for 
example, assembly tools behave differently depending 

Figure 1 | Methods for assembly validation.  A | Patterns in the alignment of reads 
along the assembled sequence, highlighting potential misassemblies: misoriented mate 
pairs, indicating a possible misjoin between unrelated genomic regions (a); a region 
with unusually deep coverage, indicating potential collapsed repeat (b); and a weak 
join, indicating a possible misjoin between unrelated genomic regions (c). B | Three 
assemblies (generated using ALLPATHS‑LG, ABySS2 and SOAPdenovo) of the same data 
set (namely, Staphylococcus aureus) were compared using the feature response curve 
(FR-curve)58 approach. The plot provides a visual representation of the trade-off 
between contiguity (cumulative assembly size on the y axis) and correctness 
(cumulative number of errors on the x axis). The assembled contiguous sequences 
(contigs) are considered in decreasing order of their sizes (the largest contigs occur at 
the bottom of the plot). The data were generated from the assemblies reported in 
REF. 43, and errors were estimated by alignment to the complete sequence of the 
genome. Note, however, that the analysis was primarily done for illustration purposes, 
and this figure should not be used to draw general conclusions about the relative 
performance of these assemblers. The curve corresponding to the ALLPATHS‑LG 
assembly is always above and to the left of that for the SOAPdenovo assembly, 
indicating that the former is better (that is, it achieves higher contiguity for the same 
number of errors, or conversely, fewer errors for the same size). Also evident in the plot 
is the rapid accumulation of errors in small contigs (shown by the plateau on the right 
side of the curve). The curve corresponding to the ABySS2 assembly highlights an 
interesting artefact: this assembly contains more DNA than the other two but also 
greatly exceeds the actual size of the genome being assembled (as shown by the dashed 
line). Without prior knowledge of the genome size, this assembly may be preferred as it 
assembles more DNA with a similar number of errors as ALLPATHS‑LG.
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Isolate genome
The genome of a single 
organism isolated through 
culture, for which a  
substantial quantity of  
DNA can be obtained.

on the specific structure of the sequencing experiment 
(in terms of the genome repeat structure, sequencing 
technology used, and so forth)42,43,60,61. Furthermore, 
these comparative studies highlight the absence of well-
accepted validation measures: each study used a differ-
ent collection of metrics and validation utilities, making 
it impossible to compare their respective results directly. 
There is a crucial need in the community for open-
source validation tools that implement robust de novo 
methods for evaluating and comparing the correctness 
and contiguity of assemblies.

Evaluating the validation results produced by the 
approaches outlined above can be difficult as different 
assemblers choose a different trade-off between con-
tiguity and correctness. As will be further detailed in 
the next section, this trade-off is affected by the spe-
cific application of the assembly software and even the 
ultimate goal of the sequencing process. For example, 
a study of the genes within an organism might sacri-
fice contiguity for accuracy, whereas studies of struc-
tural variation might tolerate small sequence errors to  
preserve long-range contiguity.

Applications of sequence assembly
Sequence assembly tools were originally developed 
for assembling whole genomes. The increased use of 
sequencing in new genomic applications has revealed 
the need for new assemblers that ‘understand’ the spe-
cific characteristics of the data being assembled. For 
example, in early assemblies of transcriptomic63 and 
metagenomic data sets64,65, existing genome assemblers 
were adapted with minor tweaks and changes. Recent 

work has emphasized the need for specialized assem-
blers that can effectively exploit the characteristics of the 
sequences that need to be reconstructed8,66 (TABLE 1 and 
Supplementary information S1 (table)). Here we out-
line the most common applications of assembly tools 
and their specific characteristics that affect assembly 
strategies.

Whole-genome sequencing of isolate genomes. Isolate 
genome data are usually derived from few chromosomes 
present in the same number of copies within the cells 
being sequenced (notable exceptions are plasmids and 
organelles). As a result, assembly software can assume 
fairly even depth of coverage (FIG. 2a) and can use this 
information both to identify repeat regions (that is, 
regions in which the depth of coverage is unusually high) 
and to estimate the quality of the resulting assembly (see 
above). Furthermore, the high quality and quantity of 
DNA generated in isolate genome projects makes it 
easier to generate a broad range of mate-pair librar-
ies; this information can be used to resolve repeats and 
increase assembly contiguity. Most assemblers available 
today (such as Velvet20, SOAPdenovo22, ABySS21 and 
ALLPATHS30) were designed for the assembly of isolate 
genome data. Choosing from among these and many 
other similar tools primarily depends on the sequenc-
ing technology used (for example, Velvet can effectively 
assemble Illumina or Solid data, but Sanger sequences 
are likely to be better handled by a traditional assem-
bler, such as the Celera Assembler44; TABLE 1) and the 
available computational resources (for example, ABySS 
was designed for distributed computing systems, such as 
computational grids, whereas SOAPdenovo is best suited 
on shared-memory systems, such as single servers with 
multiple processors).

Single-cell genomics. Obtaining sequence data from 
small numbers of cells usually requires aggressive 
whole-genome amplification techniques67,68 that lead to 
chimeric sequences and highly non-uniform coverage 
of the genome being assembled6,69 (FIG. 2b). As a result, 
statistical repeat detection and validation approaches 
developed for isolate genome assembly are not effec-
tive for single-cell genome sequencing data sets. Single-
cell assemblers, such as IDBA-UD6 and SPADes7, thus 
have to rely on alternative approaches for detecting 
repeats and for correcting sequencing errors, lead-
ing to substantial improvements over generic genome 
assemblers6,7.

Transcriptomics. Transcriptome data are typically 
derived from the total mRNA content of cells, compris-
ing of a mixture of full-length and partial transcripts at 
various levels of abundance as well as the many possible 
splice forms of alternatively spliced genes. The sequences 
to be reconstructed thus have highly non-uniform cov-
erage, even within the same transcript, and this problem 
is compounded by experimental limitations, such as the 
non-uniform amplification of mRNA70. Furthermore, 
cross-transcript repeats (for example, exons shared by 
multiple isoforms of the same gene) lead to ambiguity in 

Figure 2 | Comparison of isolate genome, single-cell and metagenomic assembly.   
a | Depth-of-coverage histogram for an isolate genome sequencing project. Coverage is 
roughly uniform across the genome. b | Depth-of-coverage histogram for a single-cell 
project. Coverage is widely varying and genome regions may even be missed (red box). 
c | Metagenomic or transcriptomic project. Multiple genomes occur at different levels 
of coverage. Also note the similarities (denoted by colour and numbers) between 
recombined but closely related genomes. Reads originating from regions labelled with 
the same number appear to be identical to the assembler and cannot distinguish 
between the two genomes with genotypes 1–2–3–4 and 1–5–2–4, respectively.
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k-mers
Strings of k consecutive  
letters extracted from a  
longer sequence, such as a 
read or a reference assembly.

assembly. A successful strategy for coping with the une-
ven representation of transcripts involves running the 
assembly tool multiple times using a range of parameters 
that have been optimized for different levels of sequence 
abundance9,71 (for example, longer k-mers allow accu-
rate assembly of abundant transcripts, whereas shorter 
k-mers allow the assembly of low-coverage sequences). 
The resulting assemblies are then merged using ad hoc 
procedures to remove redundant contigs and to improve 
the assembly further.

Depending on the needs of their specific applica-
tion, researchers may choose between assemblers that 
attempt to report just the most reliable transcripts, such 
as ABySS63, and assemblers that attempt to maximize 
the number of transcripts reconstructed, such as Oases72 
and Trinity8. Furthermore, recent comparative stud-
ies73,74 have revealed a trade-off between performance 
and accuracy. Constructing high-quality assemblies 
using, for example, Trinity8 or Oases72 requires sub-
stantial computational resources, whereas more effi-
cient assemblers such as Trans-ABySS9 may generate 
fragmented transcriptomes. These studies have focused 
only on the accuracy–efficiency trade-off and have not 
specifically evaluated other features of transcriptome 
assemblers, such as the ability to capture alternative 
isoforms or to reconstruct fusion genes, and these 
should serve as important points to investigate in future 
comparisons.

Metagenomics. Metagenomic data derive from the 
combined DNA content of viral, bacterial or eukary-
otic communities (as opposed to individually iso-
lated organisms). Many of the challenges encountered  
in the assembly of transcriptome data are also found in  
metagenomics, such as the varied depth of coverage 
across the individual chromosomes being assembled, the 
presence of cross-genome repeats (for example, riboso-
mal DNA or mobile elements shared by two or more 
organisms) and regions of genomic variation distin-
guishing otherwise identical genomes. Unlike transcrip-
tome assembly, however, the depth of coverage within a 
chromosome is fairly even, and this information can be 
used to group together contigs that originate from the 
same genome4,64. To mitigate the effect of cross-genome 
repeats, scientists have relied on careful analysis of the 
assembly graph and the use of mate-pair information3 
and have also developed approaches for separating out 
individual genomes, which can then be assembled with 
traditional tools4. The latter approach can be affected by 
errors in the decomposition that lead to a higher rate of 
misassemblies75.

The presence of multiple strains or similar species 
that differ owing to genomic rearrangements, recombi-
nation and mobile elements complicates the way in which 
assemblers format their output. Reconstructing individ-
ual genomes for strains of a species is typically impos-
sible, as the genomic regions shared between strains 
(that is, those with nearly identical sequence) are often 
much longer than read lengths or commonly obtain-
able mate-pair sizes (FIG. 2c). Furthermore, there are no 
widely accepted approaches for constructing consensus 

genomic sequences along which genomic variants can 
be documented (although initial steps in this direction 
have been taken3,5). A further challenge is the sheer size 
of metagenomic data sets — sufficient sequencing must 
be carried out to ensure adequate representation of a 
reasonable fraction of genomes in a sample (for exam-
ple, the Human Microbiome Project76 estimated that 
approximately 15 Gb of sequencing are necessary to cover 
fully the genome of Escherichia coli, which is a minor  
member of gut communities77) — leading to the need for  
memory-efficient genome assemblers28.

Although research on metagenomic assembly is still 
in its infancy, valuable scientific insights have already 
been derived65,78. These have come through the use of 
‘traditional’ assemblers, such as SOAPdenovo22, and 
newly developed tools that are specifically designed for 
metagenomic applications, including Bambus 2 (REF. 23), 
Meta-IDBA5 and MetaVelvet4.

Structural variations and haplotypes. An increasingly 
common application of sequence assembly is the study of 
structural variations and novel sequences79 with respect 
to a reference genome. Most commonly, the reference 
genome is a closely related strain (such as a human 
individual being compared to the human genome refer-
ence). However, closely related organisms (for example, 
chimpanzees against the human reference80) can also be 
used, although no studies have yet evaluated the impact 
of the evolutionary divergence between the genomes on  
the effectiveness of variation discovery. Structural 
variation analyses start either with an assembly of the 
genome of interest, which is then compared to a refer-
ence sequence, or with identification of discordance in 
the direct alignment of unassembled mate-pair reads 
to the reference genome. The first approach may miss 
heterozygous events that are ‘hidden’ by the assembly 
process81, whereas the second approach may fail in 
repeat regions or in the presence of complex rearrange-
ment events. In the second approach, sequence assembly 
serves as a way to validate the structural variants pre-
dicted and to reconstruct the sequence surrounding the 
genomic break points82–84. A targeted, local assembly is 
done with relaxed criteria (that is, joining reads even if 
they overlap by only a small amount) to improve the 
ability to reconstruct sequences of uneven coverage; this 
approach is taken by BreakDancer82.

It is important to note that sequence assembly tools 
(with a few notable exceptions31,84) typically reconstruct 
a linear consensus sequence and do not explicitly han-
dle polyploidy. After a consensus sequence has been 
obtained and variant positions identified, a logically 
distinct set of tools — haplotype assemblers (for exam-
ple, HapCompass85 and HapCut86) — can try to string 
variations together to determine distinct haplotypes. 
A similar version of this problem is encountered in 
metagenomic or viral quasi-species data sets in which 
the number and abundance of haplotypes (that is, highly 
similar but distinct genomes) is variable and has to be 
estimated directly from the data87,88. Programs that are 
specifically tailored for this problem include ShoRAH87, 
Vispa89 and QuRe90.

R E V I E W S

NATURE REVIEWS | GENETICS	  VOLUME 14 | MARCH 2013 | 165

© 2013 Macmillan Publishers Limited. All rights reserved



Conclusions
The rapid development of new sequencing technologies 
is being mirrored by the development of new genome 
assembly tools that are able to handle the characteristic 
features of the new technologies as well as the increased 
scope of genomic applications that rely on sequencing 
data. Despite the many new assembly tools becoming 
available on a monthly basis within the community, 
most of the advances in the field have been of a prac-
tical rather than a theoretical nature and have been 
targeted at engineering issues, such as memory con-
sumption and the ability to handle new types of data. 
Despite continued and rapid advances in sequencing 
technologies, modern sequencing data carry limited 
information for use in assembly algorithms, and thus 
automated reconstruction of whole genomes is unlikely 
in the near future. An emerging trend in the field is the 
simultaneous development of assembly algorithms and 
sequencing experiments, allowing researchers to gener-
ate data that can most effectively inform the assembly 
process. Initial forays in this direction have occurred for 
both eukaryotic40 and bacterial11 assembly, for structural 

variation and transcriptome assembly41 and have tar-
geted both read-length11,40 and mate-pair sizing12,41. We 
hope that this trend will lead to a tighter interaction 
between tool developers and the technology commu-
nity. Future sequencing technologies should be evalu-
ated not just through cost, throughput or length of reads, 
but also through their ability to inform bioinformatic 
analyses (including, but not limited to, assembly) of  
the resulting data. In other words, the technical costs 
of the sequencing experiment must be balanced against 
the effectiveness and ultimate cost of the downstream 
analysis process, which is often substantially higher in 
modern experiments.

New sequencing technologies (for example, Oxford 
Nanopore) have been announced that may generate sub-
stantially longer reads than is currently possible. These 
long reads may eliminate or substantially reduce the 
challenge posed by genomic repeats, raising the impor-
tance of other challenges faced by modern assemblers, 
in particular in the context of haplotype resolution and  
analysis of genomic variation in both eukaryotes  
and metagenomic data sets.
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